| 777 e — b B
an A - S T

Major S harae e s ource Center

ERDCIVESD IKULD

ERDC MSRC PET Technica Report No. 01-28

STWAVE: A Case Study in
Dual-L evel Parallelism

by

Rebecca Fahey
Jane Smith

13 July 2001




Work funded by the Department of Defense

High Performance Computing M oder nization Program
U.S. Army Engineer Research and Development Center
Major Shared Resour ce Center through

Programming Environment and Training

Supported by Contract Number: DAHC94-96-C0002
Computer Sciences Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of Defense position, policy, or decision
unless so designated by other official documentation.



STWAVE: A Case Study in Dual-Level

Parallelism

Rebecca Fahey, Computer Sciences Corporation
U. S. Army Engineer Research and Development Center

Major Shared Resource Center(ERDC MSRC)
Jane Smith, Ph.D., Coastal and Hydraulics Laboratory
U. S. Army Engineer Research and Development Center

July 13, 2001

1 Introduction

This case study explores the dual-level parallel implementation of the Steady-
State Spectral Wave Model (STWAVE) code'. STWAVE is a near-shore,
wind-wave, growth and propagation simulation program. Two natural levels
of parallelism exist in the model and are exploited in this work.

The calculations that process multiple wave runs are embarrassingly par-
allel and are distributed to the available MPI processes resulting in an almost
linearly scalable MPI code. However, the number of MPI processes cannot be
increased beyond the number of wave runs, limiting the achievable speedup
with MPI. Moreover, within each MPI task, a number of lengthy loops are
being repeatedly executed, and this natural second level of parallelism is
exploited with OpenMP to obtain additional speedup.

Dual-level MPI/OpenMP parallel programming, has many advantages.
For MPI or OpenMP programs with limited scalability and an existing second
level of parallelism, the speedup attained surpasses the speedup possible with
either method alone. The program is also more versatile because the hybrid
code can be used to its full advantage on a shared memory architecture and
still be used as an MPI code on a distributed architecture. These advantages
are propelling dual-level parallel programming models to the forefront of high
performance computing.

In this article, the development of a dual-level parallel program from
the serial STWAVE code is explored. An overview of the STWAVE code
along with an overview of the parallelization is given. Scalability issues are

!The serial version of STWAVE was developed as part of the Coastal Inlets Research
Program by Donald T. Resio and Jane McKee Smith of the U.S. Army Engineer Research
and Development Center (ERDC).



discussed and timings are presented from two high performance computers,
an SGI Origin 2000 and an IBM Power3 SMP.

2 Overview of STWAVE (2]

STWAVE is an easy-to-apply, robust, steady-state model for nearshore, wind-
wave growth and propagation. The model numerically solves the steady-state
convervation of spectra action balance along backward-traced wave rays us-
ing finite difference methods. STWAVE is used routinely on coastal projects
in the United States and abroad (over 40 recent or ongoing U.S. Corps of
Engineers applications) to estimate wave heights, periods, and direction for
projects related to sediment transport and navigation. The processes rep-
resented in STWAVE include refraction, shoaling, wave-current interaction,
wave breaking, and wind-wave generation. Input into the model includes
bathymetry, offshore spectra, water levels, and currents(optional). Assump-
tions made in STWAVE include mild bottom slope; spatially homogeneous
offshore waves; steady waves, currents, and winds; linear refraction and shoal-
ing; depth-uniform current; and negligible bottem friction. STWAVE has
been incorporated into the Surface-Water Modeling System, which provides
a user interface and supporting software for grid generation, interpolation of
current fields, generation of input spectra, and visualization of model output.

Multiple wave model runs are executed by specifying multiple input wave
spectra and current fields in the input files. During multiple runs, the model
paramaters, and bathymetry, which are specified in other input files, remain
constant. The calculations for each of these wave runs are independent,
providing the basis for the MPI implementation of the code.

3 Overview of the Parallelization

MPI is used to distribute the calculations for each wave run to the avail-
able processes, while OpenMP is used to exploit the remaining loop level
parallelism. The embarrassingly parallel calculations for each wave run are
distributed to the available MPI processes resulting in a cyclic distribution
of the spectra boundary and current field data. The bathymetry and model
parameter data is replicated because it is used by each process. The calcula-
tions for each wave run are performed independently with no communication
between MPI processes. Within each MPI task, OpenMP threads are used
to parallelize several of the most time intensive loops.

3.1 MPI Implementation

The embarrassingly parallel calculations for each set of spectra boundary
data are distributed to the available MPI processes. Each MPI processes
reads its assigned data from an input file resulting in a cyclic distribution



of the spectra boundary data. Calculations are performed independently
with no communication between MPI processes. The calculated results from
each input set are stored in temporary files which must be assembled during
post-processing.

For the MPI implementation, a method to distribute the spectra bound-
ary and current data to the processors was required. Since processing each
wave run required nearly the same amount of time, a master-slave approach
was not deemed necessary. Instead, each processor reads through the data
until it reaches the data needed for its assigned iteration. Data which is not
needed for the assigned iteration is simply overwritten. To group the reads
together, some minor code reorganization was necessary. Reading the in-
put data could be done more efficiently if direct-access input files were used.
However, such a change would require undesired changes to preprocessing
programs.

To generate the same output files as the serial version, the MPI imple-
mentation utilizes temporary output files for each wave run. After STWAVE
completes, a post-processing script is used to assemble the files. Scripts were
constructed to automate this process. An execution script, runSTWAVE, is
used to submit the process script to the batch system which runs STWAVE
on the specified input data sets. A post-processing script is also queued to
perform the post-processing after the initial job completes.

3.2 OpenMP Implementation

Within each MPI task, loop-level parallelism is also exploited. This paral-
lelism could not be exploited well with MPI because the excessive commu-
nication necessitated by data dependencies would severely limit the gains in
scalability. The use of OpenMP, which utilizes shared memory, allowed this
additional level of parallelism without the communication overhead.

Since automatic, compiler generated threading produced little speedup,
OpenMP directives were hand coded into the most time intensive subrou-
tines. With only one exception, OpenMP was used exclusively to divide the
iterations of large loops among threads. Before each of the nine most time
intensive loops, a compiler directive was inserted to create/wake-up threads
and specify the variable scoping. Also, in one subroutine, OpenMP directives
were added to divide the subroutine into sections which could be executed
in parallel.

The OpenMP directives comprise less than 50 lines of additional code,
which can be activated at compile time if desired. No code modifications were
necessary to implement the OpenMP. However, indices on some loops were
switched and/or the loops slightly restructured for better cache utilization
by avoiding invalidation of cache lines as the threads update shared arrays.

This type of programming has a tremendous amount of versitility. The
single code can be compiled to produce: 1) a dual-level parallel program
utilizing both MPT and OpenMP that can be used on shared memory archi-



tectures and hybrid architectures, 2) an MPI code for use on distributed ar-
chitectures, 3) an OpenMP code that could be used when threading is desired
but MPT is not, and 4) a serial version that could be used on workstations
without parallel processing capabilities. Since this versitility complicates in-
stallation, a makefile system was designed to simplify the process. Platform
specific makefiles are provided for several high performance computer plat-
forms.

4 Scalability

The MPI portion scales to n, where n is the number of wave runs to be
completed. It will not scale beyond n MPI processes since there are no
additional wave runs to distribute to the extra processors. The efficiency? of
the code remains good for small numbers of processors, but drops off as n is
approached due to the overhead associated with replicating data.

The speedup gained by threading was consistent on the two high perfor-
mance computers tested. The speedup is dependent upon the grid size of the
problem, with larger grid sizes exhibiting better thread scalability. Using a
grid size of 301x511, a 40% decrease in execution time is observed on both
machines utilizing two threads. Additional decreases are obtained for addi-
tional threads, with a 66% decrease obtained with 7 threads. Above seven
threads, the amount of work assigned to each thread is insufficient to yield
significant additional speedup in this test case.

4.1 MPI Scalability

When compiled with only MPI and no threads, the code scales almost linearly
for appropriately chosen numbers of processors. Table 1 gives the execution
times for 36-wave runs on an IBM Power3 SMP located at the Engineer
Research and Development Center (ERDC) Major Shared Research Center
(MSRC). The timings were conducted in a non-dedicated production envi-
ronment. However, care was taken to insure sole access to all nodes. Also,
since communication is not required by the program, jobs running on other
nodes should have little effect on the execution time.

Table 1 shows nearly linear scalability when an appropriately chosen small
number of processors are used. Given n-wave runs and p processors, nearly
linear scalability results for 2 processors, as long as p is less than half of
n. Since the amount of replicated data is significant, the efficiency is better
when the processors reuse the replicated data for several wave runs. When the
processors are only assigned one or two wave runs, the overhead associated

2Efficiency is calculated using the formula E = T, /(P * Tp), where T is the execution
time for the serial program, P is the number of processors, and Tp is the execution time
for the parallel version running on P processors. Speedup is calculated using the formula
S = PE. Both equation were taken from [1].



Execution Times for the MPI version
on an IBM Power3 SMP

MPI Processes ‘ Execution Time ‘ Speedup ‘ Efficiency ‘

serial 13hrl15m 1 100%
2 6hr44m 2.0 98.4%
3 4hr32m 2.9 97.4%
6 2hr24m 5.5 92.0%
12 1hr16m 10.5 87.2%
18 Hdmin 14.5 80.3%
36 33min 24.1 66.9%

Table 1: Execution times, relative speedup, and relative efficiency for various
numbers of processors on the IBM Power3 SMP located at ERDC MSRC.

with the replicated data becomes a significant portion of the runtime and
adversely effects the efficiency.

It is important for load balancing that n be divisible by p. This insures
that each processor is assigned the same number of wave runs. When it is
not possible to choose p such that p divides n, the best load balancing will
be achieved by choosing p such that p divides n + e where e is the smallest
possible integer. This is important because e processors will be idle while the
other processors complete their last assigned wave run. If e is small and each
processor is assigned several wave runs, the idle time should not become a
concern.

The efficiency can be maintained at an acceptable level by choosing an
appropriate number of MPI processes. Also, when speedup is more impor-
tant than the efficient use of computer resources, additional speedup can be
obtained for up to n MPI processes at the cost of some efficiency. As a result
of the design of the MPI version the code will not scale beyond n processors.
To allow additional speedup, OpenMP directives were inserted to exploit
loop level parallelism.

4.2 Dual Parallelism Scalability

The addition of threads raises the upper limit on the scalability, while main-
taining good efficiency. Table 2 gives the execution times for the same 36-
wave runs executed under the same conditions. However, the OpenMP di-
rectives were actived and the code was run with 2 threads per MPI process.
With the addition of the OpenMP directives, the code continues to scale out
to 72 processors, as compared to 36 for the MPI version. This raises the
maximum attainable speedup of 24, for the MPI version, to 41.8 with only
2 threads per MPI process. The increased speedup comes with a reasonable
drop in efficiency.



Execution Times for the MPI/OpenMP version
on an IBM Power3 SMP

MPI Processes | Total Processors ‘ Execution Time ‘ Speedup ‘ Efficiency ‘

serial 1 13h15m 1 100%
2 4 4h1lm 3.3 82%
3 6 2h44m 4.8 81%
6 12 1h25m 9.4 80%
12 24 45min 17.7 74%
18 36 32min 24.8 69%
36 72 19min 41.8 58%

Table 2: Execution times, speedup, and efficiency for various numbers of
MPI processes spawning 2 threads each on the IBM Power3 SMP located at

ERDC MSRC.

Figure 1 shows a graphical representation of the speedup of both the MPI
and the MPI/OpenMP versions. It is clear that both versions provide nearly
linear speedup, with the MPI-only version providing slightly better speedup
for small numbers of processors. However, for more than 24 processors, the
MPI/OpenMP version produces a better speedup than the MPI-only version.
Also, the threaded version extends the nearly linear scalability beyond the

Speedup Comparison on an IBM Power3 SMP

10°

[| —=— MPI and OpenmP -

Speedup
B
o
T
\

Figure 1: Comparison showing the speedup of the MPI and the
MPI/OpenMP version for the 36-wave run test case on the IBM Power3
SMP located at ERDC MSRC. With the MPI version, each processor ran
an MPI task. However, with the MPI/OpenMP version only half of the
processors ran an MPI task with the others only being utilized for threads.



36-processor point where the MPI version cesses to scale.

As further verification of the parallelization method, each run was re-
peated on an SGI Origin 2000 located at ERDC MSRC. The results were
similar as seen in Table 3. The slower processor speed on the SGI Origin
2000 results in longer execution times and the efficiency is not quite as high
as was seen on the IBM Power3 SMP. However, the dual-level program is
clearly a viable method of obtaining additional speedup on this machine as
well.

Execution Times for the MPI/OpenMP version
on an SGI Origin 2000

MPI Processes | Total Processors ‘ Execution Time ‘ Speedup ‘ Efficiency

serial 1 14hr21min 1 100%
2 4 4hr33min 3.2 79%
3 6 3hr10min 4.5 76%
6 12 1hr38min 8.8 73%
12 24 51min 16.9 70%
18 36 35min 24.6 68%
36 72 22min 39.1 54%

Table 3: Execution times, speedup and efficiency for various numbers of MPI
processes spawning 2 threads each on the SGI Origin 2000 located at ERDC
MSRC.

Although only two threads were used per MPI processes in the test case,
more threads could have been used to gain additional speedup. In general,
the number of threads that can be used is limited by the grid size. In this
particular problem, additional threads, up to 7, will continue to yield addi-
tional speedup. This was consistent for both machines tested, as was the
amount of speedup delivered by threading. This is shown by Table 4.

From the analysis of this test case, dual-level parallelism is shown to be
advantageous in two ways. First, threads can provide additional speedup
while preserving efficiency. From a comparison of 2 with 1, notice that run-
ning this test case with 18 MPI processes spawning 2 threads is more efficient
and produces a better speedup than running 36 MPI processes. Thus, the
same 36 processors yield better speedup with the MPI/OpenMP parallel
code than with the MPI code. Second, when speedup is a high priority, the
dual-level parallel code has a much higher maximum speedup. For this test
case, the maximum speedup of the MPI version running on the IBM Power3
SMP is 24, but the maximum speedup of the MPI/OpenMP version is 94
when run with 36 MPI processes spawning 7 threads. This run decreased
the 13 hours 15 minutes required by the serial run to only 8.5 minutes.



Speedup in Execution Times for Various Numbers of
Threads on an IBM Power3 SMP and an SGI Origin 2000

Number of Speedup
Threads | IBM Power3 SMP ‘ SGI Origin 2000
1 1.0 1.0
2 1.7 1.6
3 2.0 2.0
4 2.4 2.4
5 2.6 2.4
6 2.9 2.7
7 3.0 3.1
8 3.0 3.1

Table 4: Speedup in execution times for various numbers of threads on the
IBM Power3 SMP and SGI Origin 2000 located at ERDC MSRC.

5 Conclusion

The MPI version of STWAVE scales out to the number of wave runs being
executed. For small numbers of processors, the test case scales linearly, with
the time required to process the data being nearly 7} /p where T} is the time
required by the serial program and p is the number of MPI processes used. As
the number of processors approaches the number of wave runs, the required
time begins to decrease more slowly as the overhead associated with the repli-
cated data becomes a larger factor. For the test case, the maximum speedup
of 24 with the MPI version is attained with 36 MPI processes. However,
the MPI/OpenMP version running on the same 36 processors with 18 MPI
processes spawning 2 threads each exceeds that to yield a speedup of 24.8.
In addition, when speedup is a priority, additional speedup can be attained
with the MPI/OpenMP version. The amount of speedup that can be gained
by threading is dependent upon the grid size of the problem. However, with
this test case, the dual-level parallel version yields a maximum speedup of
94 on the IBM Power3 SMP as compared to 24 for the MPI-only version on
the same machine.

References

[1] Foster, Ian. Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Addison-Wesley, 1995.

[2] Smith, Jane McKee, Donald T. Resio, Alan K. Zundel (1999).
“STWAVE: Steady-State Spectral Wave Model, Report 1: User’s Man-



ual for STWAVE Version 2.0,” Instruction Report CHL-99-1, Engineer
Research and Development Center, Vicksburg, MS.



